#### T.Y.B.Sc.: Semester - VI

#### US06CMTH23

Linear Algebra

[Syllabus effective from June, 2020]

# Study Material Prepared by: Mr. Rajesh P. Solanki Department of Mathematics and Statistics V.P. and R.P.T.P. Science College, Vallabh Vidyanagar

#### 1. Inner Product

#### Inner product:

Let V be a real or complex vector space. The inner product on V is a binary operation . which associates each **ordered** pair u, v of vectors in V with a unique scalar u.v satisfying following properties.

- (i) u.(v+w) = u.v + u.w
- (ii)  $(\alpha u).v = \alpha(u.v)$
- (iii)  $u.v = \overline{v.u}$
- (iv)  $\overline{0}.u = 0 = u.\overline{0}$

## 2. Inner Product Space

#### Inner Product Space

A vector space together with an inner product defined on it, is called an Inner Product Space.

## 3. Euclidean Spaces and Unitary Spaces

# **Euclidean Spaces and Unitary Spaces**

A finite dimensional real inner product space is called an Euclidean Space and a finite dimensional complex inner product space is called a Unitary Space.

- 4. Let V be an inner product space u,v and w be any three vectors in V, and  $\alpha$  a scalar. Then prove the following.
  - (i) (u+v).w = u.w + v.w
  - (ii)  $u.(\alpha v) = \overline{\alpha}(uv)$
  - (iii)  $\overline{0}.u = 0 = u.\overline{0}$

**Proof:** 

(i)

$$(u+v).w = \overline{w.(u+v)}$$

$$= \overline{w.u + w.v}$$

$$= \overline{u.w} + \overline{v.w}$$

$$= w.u + w.v$$

$$\therefore (u+v).w = w.u + w.v$$

(ii)

$$u.(\alpha v) = \overline{(\alpha v).u}$$

$$= \overline{\alpha(v.u)}$$

$$= \overline{\alpha}(\overline{v.u})$$

$$= \overline{\alpha}(u.v)$$

$$\therefore u.(\alpha v) = \overline{\alpha}(u.v)$$

(ii)

$$\overline{0}.u = (0v).u 
= 0(v.u) 
= 0 
\therefore \overline{0}.u = 0$$

$$u.\overline{0} = u.(0v)$$

$$= 0(u.v)$$

$$= 0$$

$$\therefore \overline{0}.u = 0$$

Hence,

$$\overline{0}.u = 0 = u.\overline{0}$$

5. Norm

#### Norm:

Let V be an inner product space. For  $u \in V$  the norm of u, generally denoted by normu, is defined as

$$||u|| = \sqrt{u.u}$$

6. Let V be an inner product space. Then for arbitrary vectors u and v in V, and scalar  $\alpha$  prove the following,

- (i)  $\|\alpha u\| = |\alpha| \|u\|$
- (ii)  $||u|| \ge 0$  and ||u|| = 0 iff  $u = \overline{0}$
- (iii)  $|u.v| \le ||u|| ||v||$
- (vi) ||u+v|| = ||u|| + ||v||

#### **Proof:**

(i)

$$\|\alpha u\| = \sqrt{(\alpha u) \cdot (\alpha u)}$$

$$\therefore \|\alpha u\|^2 = (\alpha u) \cdot (\alpha u)$$

$$= \alpha (u \cdot (\alpha u))$$

$$= \alpha \cdot \overline{\alpha} (u \cdot u)$$

$$= |\alpha|^2 \|u\|$$

$$\therefore \|\alpha u\| = |\alpha| \|u\|$$

(ii)

$$||u||^2 = u.u$$

$$\geqslant 0$$

$$\therefore ||u|| \geqslant 0$$

Also,

$$||u|| = 0 \Leftrightarrow \sqrt{u.u} = 0 \Leftrightarrow u.u = 0 \Leftrightarrow u = \overline{0}$$

(iii) If  $u = \overline{0}$  then clearly,  $|u.v| \leqslant ||u|| ||v||$ .

Now, if  $u \neq \overline{0}$  then u.u > 0. Therefore ||u|| > 0

Define, a scalar  $\alpha = \frac{v.u}{\|u\|^2}$ .

Let  $w = v - \alpha u$ .

Now,

$$0 \leqslant w.w$$

$$= (v - \alpha u).(v - \alpha u)$$

$$= v.v - v.(\alpha u) - (\alpha u).v + (\alpha u).(\alpha u)$$

$$= v.v - \overline{\alpha}(v.u) - \alpha(u.v) + (\alpha \overline{\alpha})u.u$$

$$= v.v - \overline{\alpha}(v.u) - \alpha(u.v) + |\alpha|^2 u.u$$

$$= ||v||^2 - \frac{\overline{v.u}}{||u||^2}(v.u) - \frac{v.u}{||u||^2}(\overline{v.u}) + \frac{|u.v|^2}{||u||^4}||u||^2$$

$$= ||v||^2 - 2\frac{|v.u|^2}{||u||^2} + \frac{|u.v|^2}{||u||^2}$$

$$= ||v||^2 - \frac{|v.u|^2}{||u||^2}$$

$$\therefore \frac{|v.u|^2}{||u||^2} \leqslant ||v||^2$$

$$\therefore |u.v|^2 \leqslant ||u||^2 ||v||^2$$

$$Hence, |u.v| \leqslant ||u|| ||v||$$

(iv)

$$||u+v||^2 = (u+v).(u+v)$$

$$= u.u + u.v + v.u + v.v$$

$$= ||u||^2 + u.v + \overline{u.v} + ||v||^2$$

$$= ||u||^2 + 2Re(u.v) + ||v||^2$$

$$\leq ||u||^2 + 2||u|| + ||v||^2$$

$$= ||u||^2 + 2||u|| ||v|| + ||v||^2$$

$$= (||u|| + ||v||)^2$$

$$\therefore ||u+v|| \leq ||u|| + ||v||$$

## 7. Orthogonal Vectors

## **Orthogonal Vectors**

Two vectors u, v of an inner product space V are said to be orthogonal to each other if

$$u.v = 0$$

#### 8. Orthogonal set of vectors

## Orthogonal set of non-zero Set of vectors

A subset of an inner product space is said to be an orthogonal set if for each pair of distinct vectors in the set is orthogonal.

9. Prove that any orthogonal set of non-zero vectors in an inner product space is linearly independent (LI).

#### **Proof:**

Let A be an orthogonal subset of an inner vector space and  $B = \{u_1, u_2, \dots, u_n\}$  is a finite subset of A.

Suppose,  $\alpha_i$ , i = 1, 2, ..., n are scalars such that,

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n = \overline{0}$$

Now, for any  $u_i \in B$ ,

$$\overline{0}.u_i = 0$$

$$(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n).u_i = 0$$

$$\alpha_1(u_1.u_i) + \alpha_2(u_2.u_i) + \dots + \alpha_n(u_n.u_i) = 0$$

$$\alpha_i(u_i.u_i) = 0 \quad (\because u_i.u_j = 0, \ i \neq j)$$

$$\alpha_i = 0 \quad (\text{As } u_i \neq \overline{0}, \ u_i.u_i > 0)$$

Since,  $\alpha_i = 0$ ,  $\forall i = 1, 2, ..., n$ , the subset B of A is a linearly dependent set. Therefore, every finite subset of A is linearly independent. Hence A is linearly independent.

# 10. Projection of a vector

## Projection of a vector

Let V be an inner product space and  $u, v \in V$ , where  $v \neq \overline{0}$ . The projection of u, along v is defined as the vector,

$$\frac{u.v}{\|v\|^2}v$$

11. Prove that every finite dimensional inner product space V has an orthogonal basis.

## **Proof:**

Let  $\{u_1, u_2, \ldots, u_n\}$  be a basis of an n-dimensional inner product space V. Using this basis we shall construct a basis  $\{v_1, v_2, \ldots, v_n\}$  of V which is orthogonal.

Take  $v_1 = u_1$ . Now define  $v_2$  by subtracting the projection of  $u_2$  on  $v_1$  from  $u_2$  as given below,

$$v_2 = u_2 - \frac{u_2 \cdot v_1}{\|v_1\|^2} v_1$$

Here,

$$v_1.v_2 = v_1.u_2 - \frac{v_1.u_2}{\|v_1\|^2}(v_1.v_1) = v_1.u_2 - \frac{v_1.u_2}{\|v_1\|^2}\|v_1\|^2 = v_1.u_2 - v_1.u_2 = 0$$

Hence,  $v_1$  and  $v_2$  are orthogonal.

Next, define  $v_3$  by subtracting projections of  $v_1$  and  $v_2$  on  $u_3$  from  $u_3$  as follows,

$$v_3 = u_3 - \frac{u_3 \cdot v_1}{\|v_1\|^2} v_1 - \frac{u_3 \cdot v_2}{\|v_2\|^2} v_2$$

As seen above here also we get,

$$v_1.v_3 = 0$$
 and  $v_2.v_3 = 0$ 

Hence,  $v_1, v_2$  and  $v_3$  are orthogonal. Continuing similarly, in general we can construct  $v_k$  by

$$v_k = u_k - \sum_{i=1}^k \frac{u_k \cdot v_i}{\|v_i\|^2} v_i$$

for  $k = 1, 2, \ldots, n$ . Such that

$$v_i.v_j = 0, i \neq j$$

Hence,  $\{v_1, v_2, \dots, v_n\}$  is an orthogonal set.

Also, none of  $v_k$  can be a zero vector, because for any  $v_k = \overline{0}$  we can express  $u_k$  as a linear combination of  $v_1, v_2, \ldots, v_k$ , hence as a linear combination of  $u_1, u_2, \ldots, u_k$ . That is not possible as  $\{u_1, u_2, \ldots, u_n\}$  is linearly independent.

Since,  $\{v_1, v_2, \dots, v_n\}$  is an orthogonal set of n non-zero vectors it is linearly independent. Hence it is an orthogonal basis for the n-dimensional vector space V.

#### 12. Orthonormal set of vectors

#### Orthogonal set of non-zero Set of vectors

An orthogonal set V of non-zero vectors is said to be an **orthonormal** set if

$$||u|| = 1$$
,  $\forall u \in V$ 

13. Orthonormalise the set of linearly independent vectors  $\{(1,0,1,1),(-1,0,-1,1),(0,-1,1,1)\}$  of  $V_4$ .

#### Answer:

Suppose,  $u_1 = (1, 0, 1, 1)$ ,  $u_2 = (-1, 0, -1, 1)$  and  $u_3 = (0, -1, 1, 1)$ . First we shall find orthogonal vectors corresponding to  $u_1, u_2$  and  $u_3$ .

Let  $v_1 = u_1 = (1, 0, 1, 1)$ . Now construct  $v_2$  as follows,

$$v_2 = u_2 - \frac{u_2 \cdot v_1}{\|v_1\|^2} v_1$$

$$= (-1, 0, -1, 1) - \frac{(-1, 0, -1, 1) \cdot (1, 0, 1, 1)}{3} (1, 0, 1, 1)$$

$$= (-1, 0, -1, 1) + \frac{1}{3} (1, 0, 1, 1)$$

$$\therefore v_2 = \left(-\frac{2}{3}, 0, -\frac{2}{3}, \frac{4}{3}\right)$$

Finally, construct  $v_3$  as follows,

$$v_{3} = u_{3} - \frac{u_{3} \cdot v_{1}}{\|v_{1}\|^{2}} v_{1} - \frac{u_{3} \cdot v_{2}}{\|v_{2}\|^{2}} v_{2}$$

$$= (0, -1, 1, 1) - \frac{(0, -1, 1, 1) \cdot (1, 0, 1, 1)}{3} (1, 0, 1, 1) - \frac{(0, -1, 1, 1) \cdot (-\frac{2}{3}, 0, -\frac{2}{3}, \frac{4}{3})}{\frac{8}{3}} \left(-\frac{2}{3}, 0, -\frac{2}{3}, \frac{4}{3}\right)$$

$$= (0, -1, 1, 1) - \frac{2}{3} (1, 0, 1, 1) - \frac{1}{4} \left(-\frac{2}{3}, 0, -\frac{2}{3}, \frac{4}{3}\right)$$

$$\therefore v_{3} = \left(-\frac{1}{2}, -1, \frac{1}{2}, 0\right)$$

Thus, we get the orthogonal set  $\{v_1, v_2, v_3\}$ .

Now,  $||v_1|| = \sqrt{3}$ ,  $||v_2|| = 2\sqrt{\frac{2}{3}}$  and  $||v_3|| = \sqrt{\frac{3}{2}}$ . The orthonormal set can be obtained by dividing  $v_1, v_2$  and  $v_3$  by their respective norms as follows,

$$\left\{\frac{v_1}{\|v_1\|}, \frac{v_2}{\|v_2\|}, \frac{v_3}{\|v_3\|}\right\} = \left\{\left(\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{6}}, 0, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right) \left(-\frac{1}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0\right)\right\}$$

14. Find an orthonormal basis of  $P_3[-1,1]$  starting from the basis  $\{1, x, x^2, x^3\}$  Use the inner product defined by

$$f.g = \int_{-1}^{1} f(t)g(t)dt$$

#### Answer:

Suppose,  $u_1 = 1, u_2 = x, u_3 = x^2, u_4 = x^3$ . First we shall find orthogonal vectors corresponding

to  $u_1, u_2, u_3$  and  $u_4$ .

Let  $v_1 = u_1 = 1$ . Now construct  $v_2$  using  $v_2 = u_2 - \frac{u_2 \cdot v_1}{\|v_1\|^2} v_1$ Here,

$$u_{2}.v_{1} = \int_{-1}^{1} u_{2}(t)v_{1}(t).dt$$

$$= \int_{-1}^{1} (t)(1).dt$$

$$= \int_{-1}^{1} t.dt$$

$$= \left[\frac{1}{2}t^{2}\right]_{-1}^{1}$$

$$\therefore u_{2}.v_{1} = 0$$

Also

$$||v_1||^2 = v_1.v_1$$

$$= \int_{-1}^{1} v_1(t)v_1(t).dt$$

$$= \int_{-1}^{1} (1)^2.dt$$

$$= \int_{-1}^{1} 1.dt$$

$$= [t]_{-1}^{1}$$

$$\therefore ||v_1|| = 2$$

Therefore, we get, 
$$\frac{u_2.v_1}{||v_1||^2}v_1 = \left(\frac{0}{2}\right)1 = 0$$
 Let  $v_2 = u_2 - \frac{u_2.v_1}{||v_1||^2}v_1$ 

Therefore,  $v_2 = x - 0 = x$ . Now, we calculate  $v_3$  using  $v_3 = u_2 - \frac{u_2 \cdot v_1}{\|v_1\|^2} v_1 - \frac{u_2 \cdot v_2}{\|v_2\|^2} v_2$  Here,

$$u_{3}.v_{1} = \int_{-1}^{1} u_{3}(t)v_{1}(t).dt$$

$$= \int_{-1}^{1} (t^{2})(1).dt$$

$$= \int_{-1}^{1} t^{2}.dt$$

$$= \left[\frac{1}{3}t^{3}\right]_{-1}^{1}$$

$$\therefore u_{3}.v_{1} = \frac{2}{3}$$

Also

$$||v_1||^2 = v_1.v_1$$

$$= \int_{-1}^{1} v_1(t)v_1(t).dt$$

$$= \int_{-1}^{1} (1)^2.dt$$

$$= \int_{-1}^{1} 1.dt$$

$$= [t]_{-1}^{1}$$

$$\therefore ||v_1|| = 2$$

Therefore, we get,  $\frac{u_3.v_1}{||v_1||^2}v_1 = \left(\frac{2/3}{2}\right)1 = \frac{1}{3}$  Also,

$$u_3.v_2 = \int_{-1}^{1} u_3(t)v_2(t).dt$$
$$= \int_{-1}^{1} (t^2)(t).dt$$
$$= \int_{-1}^{1} t^3.dt$$
$$= \left[\frac{1}{4}t^4\right]_{-1}^{1}$$
$$\therefore u_3.v_2 = 0$$

$$||v_{2}||^{2} = v_{2}.v_{2}$$

$$= \int_{-1}^{1} v_{2}(t)v_{2}(t).dt$$

$$= \int_{-1}^{1} (t)^{2}.dt$$

$$= \int_{-1}^{1} t^{2}.dt$$

$$= \left[\frac{1}{3}t^{3}\right]_{-1}^{1}$$

$$\therefore ||v_{2}|| = \frac{2}{3}$$

Therefore, we get,  $\frac{u_3.v_2}{||v_2||^2}v_2 = \left(\frac{0}{2/3}\right)x = 0$  Therefore,  $v_3 = x^2 - \frac{1}{3} - 0 = x^2 - \frac{1}{3}$  Finally, we calculate  $v_4$  using  $v_4 = u_4 - \frac{u_4.v_1}{\|v_1\|^2}v_1 - \frac{u_4.v_2}{\|v_2\|^2}v_2 - \frac{u_4.v_3}{\|v_3\|^2}v_3$  Now,

$$u_4.v_1 = \int_{-1}^{1} u_4(t)v_1(t).dt$$

$$= \int_{-1}^{1} (t^3)(1).dt$$

$$= \int_{-1}^{1} t^3.dt$$

$$= \left[\frac{1}{4}t^4\right]_{-1}^{1}$$

$$\therefore u_4.v_1 = 0$$

$$||v_1||^2 = v_1.v_1$$

$$= \int_{-1}^{1} v_1(t)v_1(t).dt$$

$$= \int_{-1}^{1} (1)^2.dt$$

$$= \int_{-1}^{1} 1.dt$$

$$= [t]_{-1}^{1}$$

$$\therefore ||v_1||^2 = 2$$

Therefore, we get,  $\frac{u_4.v_1}{||v_1||^2}v_1 = \left(\frac{0}{2}\right)1 = 0$  Also,

$$u_4.v_2 = \int_{-1}^{1} u_4(t)v_2(t).dt$$

$$= \int_{-1}^{1} (t^3)(t).dt$$

$$= \int_{-1}^{1} t^4.dt$$

$$= \left[\frac{1}{5}t^5\right]_{-1}^{1}$$

$$\therefore u_4.v_2 = \frac{2}{5}$$

$$||v_2||^2 = v_2.v_2$$

$$= \int_{-1}^{1} v_2(t)v_2(t).dt$$

$$= \int_{-1}^{1} (t)^2.dt$$

$$= \int_{-1}^{1} t^2.dt$$

$$= \left[\frac{1}{3}t^3\right]_{-1}^{1}$$

$$\therefore ||v_2||^2 = \frac{2}{3}$$

Therefore, we get,  $\frac{u_4.v_2}{||v_2||^2}v_2 = \left(\frac{2/5}{2/3}\right)x = \frac{3}{5}x$  Also,

$$u_4.v_3 = \int_{-1}^{1} u_4(t)v_3(t).dt$$

$$= \int_{-1}^{1} (t^3) \left(t^2 - \frac{1}{3}\right).dt$$

$$= \int_{-1}^{1} \frac{1}{3} (3t^2 - 1)t^3.dt$$

$$= \left[\frac{1}{6}t^6 - \frac{1}{12}t^4\right]_{-1}^{1}$$

$$\therefore u_4.v_3 = 0$$

$$||v_3||^2 = v_3.v_3$$

$$= \int_{-1}^{1} v_3(t)v_3(t).dt$$

$$= \int_{-1}^{1} \left(t^2 - \frac{1}{3}\right)^2.dt$$

$$= \int_{-1}^{1} \frac{1}{9} \left(3t^2 - 1\right)^2.dt$$

$$= \left[\frac{1}{5}t^5 - \frac{2}{9}t^3 + \frac{1}{9}t\right]_{-1}^{1}$$

$$\therefore ||v_3||^2 = \frac{8}{45}$$

Therefore, we get, 
$$\frac{u_4.v_3}{\|v_3\|^2}v_3 = \left(\frac{0}{8/45}\right)x^2 = 0$$
  
Now,  $v_4 = u_4 - \frac{u_4.v_1}{\|v_1\|^2}v_1 - \frac{u_4.v_2}{\|v_2\|^2}v_2 - \frac{u_4.v_3}{\|v_3\|^2}v_3$   
Therefore,  $v_4 = x^3 - 0 - \frac{3}{5}x - 0 = x^3 - \frac{3x}{5}$ 

Thus, we obtain orthogonal set  $\left\{1, x, x^2 - \frac{1}{3}, x^3 - \frac{3x}{5}\right\}$ . Now, to othonormalize the vectors we shall divide each vector with its norm. We have Let us calculate  $||v_4||$ .

$$||v_4||^2 = v_4 \cdot v_4$$

$$= \int_{-1}^{1} v_4(t)v_4(t) \cdot dt$$

$$= \int_{-1}^{1} \left(t^3 - \frac{3}{5}t\right)^2 \cdot dt$$

$$= \int_{-1}^{1} \frac{1}{25} \left(5t^3 - 3t\right)^2 \cdot dt$$

$$= \left[\frac{1}{7}t^7 - \frac{6}{25}t^5 + \frac{3}{25}t^3\right]_{-1}^{1}$$

$$\therefore ||v_4||^2 = \frac{8}{175}$$

Dividing  $v_1, v_2, v_3$  and  $v_4$  with their respective norms, we get the orthonormal set,

$$\left\{ \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \frac{3\sqrt{5}}{2\sqrt{2}} \left( x^2 - \frac{1}{3} \right), \frac{5\sqrt{7}}{2\sqrt{2}} \left( x^3 - \frac{3x}{5} \right) \right\}$$

15. A real (complex) square matrix is orthogonal (unitary) iff the rows of the matrix form an orthonormal set of vectors or iff the columns of the matrix form an orthonormal set of vectors.