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1. Inner Product

Inner product:

Let V be a real or complex vector space. The inner product on V' is a binary operation . which
associates each ordered pair u, v of vectors in V' with a unique scalar u.v satisfying following
properties.

i) w.(v+w)=uv+uw

2. Inner Product Space

Inner Product Space
A vector space together with an inner product defined on it, is called an Inner Product Space.

3. Euclidean Spaces and Unitary Spaces

Euclidean Spaces and Unitary Spaces
A finite dimensional real inner product space is called an Euclidean Space and a finite
dimensional complex inner product space is called a Unitary Space.




4. Let V be an inner product space u,v and w be any three vectors in V,
and « a scalar. Then prove the following.
(i) (u+v)w=vw+ovw

(i) wu.(av) =a(uv)

(i) O.u =0 = w.0

Proof:
(i)
(u+v)w=w.(u+v)
=w.u+ w.o
=Uu.wW+ VW
=w.u+wo
So(utv)w =wau+ wo
(i
u.(av) = (av).u
= a(v.u)
= a(vm)
= a(u.v)
u.(av) = a(u.v)
(i)
0.u = (0v).u
= 0(v.u)
=0
0.u=0
u.0 = u.(0v)
0(u.v)
=0
0.u=0
Hence,
0.u=0=u.0
5.  Norm




Norm:
Let V be an inner product space. For u € V' the norm of u, generally denoted by normu , is

defined as
|lu|| = Vu.u

6. Let V be an inner product space. Then for arbitrary vectors v and v in
V', and scalar a prove the following,

(1) laull = laffu]
(i) |lu/ >0 and |Jul| =0 iff u=0
(iii) Ju.v] < [lullflv]|

(vi) u+ ol = flull + v

Proof:

loul| = v/ (au).(au)
2 leul|? = (qu).(au)
= a(u.(au))

= a.a(u.u)

Also,
lu| =0 Vuu=0suu=0&u=0

(iii) If w = 0 then clearly, |u.v| < [Jul||]v]|-

Now, if u # 0 then w.u > 0. Therefore ||ul| > 0

V.U
[

Define, a scalar o =

Let w =v — au.



Now,

o
N

= (v —oau).(v— au)

v —v.(au) — (qu).v + (au).(au)
a(v.u) — a(uv) + (a@)u.u

=v.v—a(v.u) — a(u. U) + |a|2u u

=V.V —

_ 2 v.U o : —_ 2
2 vl |uwl?
= =2 e
|v.ul|?
= [|v]|* —
[[uf[?
vl
|| H2 \ H H2

o < Jlulf ol

~
Hence, |uv| < Jull]]v]|

|u+v|]> = (u+v).(u+v)

=uU+Uuv+ .U+ V0

= ||lull® + wo +wo + ||v|?
= ||ul® + 2Re(u.v) + [v]|*
< ull® + 2luv] + [v]?

= Jlull® + 2fjulllv]| + [lv]?
= (Jlull + [[o])*

el < lull + o

7. Orthogonal Vectors

Orthogonal Vectors
Two vectors u, v of an inner product space V' are said to be orthogonal to each other if

u.v =10

8. Orthogonal set of vectors

Orthogonal set of non-zero Set of vectors
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A subset of an inner product space is said to be an orthogonal set if for each pair of distinct
vectors in the set is orthogonal.

9. Prove that any orthogonal set of non-zero vectors in an inner product
space is linearly independent (LI).

Proof:

Let A be an orthogonal subset of an inner vector space and B = {uy,us,...,u,} is a finite
subset of A.

Suppose, «;, ¢ = 1,2,...,n are scalars such that,

a1uy + aots + -+ - + apu, =0

Now, for any u; € B,

0.u; =0
(aquy + agug + -+ - + apuy,).u; =0
ag(uru;) + ag(ugw;) + -+ 4 ap(up.u;) =0
a;(uiu;) =0 (uuy =0, 1 #j)
a; =0 ( As u; #0, uju; > 0)

Since, a; = 0, Vi = 1,2,...n, the subset B of A is a linearly dependent set. Therefore, every
finite subset of A is linearly independent. Hence A is linearly independent.

10.  Projection of a vector

Projection of a vector

Let V be an inner product space and u,v € V, where v # 0. The projection of u, along v is
defined as the vector,

U.v
—0
[o]]?
11.  Prove that every finite dimensional inner product space V' has an or-
thogonal basis.

Proof:

Let {uq,us,...,u,} be a basis of an n-dimensional inner product space V. Using this basis we

shall construct a basis {vy, va, ..., v,} of V' which is orthogonal.



Take v; = wy;. Now define v, by subtracting the projection of us on v; from uy as given
below,

vy = Uy — 2y
S e
Here
re, V1. U V1. U2 2
V1.2 = U1.U2 — W(Ul.vl) = V1.Ug — WHUIH = V1.Ug — V1.Ug = 0
1 1

Hence, v; and vy are orthogonal.

Next, define v3 by subtracting projections of v; and vy on w3 from ug as follows,

Us.V1 Usz.V2
- V1 — v
loal2™ ol

V3 = U3

As seen above here also we get,
v1.03 =0 and vy.v3 =0

Hence, vy, v9 and vz are orthogonal. Continuing similarly, in general we can construct v, by

iUk‘vi

Vp = Uk — —;

N
=1

for k =1,2,...,n. Such that
V;. V5 = 0, 7 7&]
Hence, {vy,vs,...,v,} is an orthogonal set.

Also, none of vy can be a zero vector, because for any v, = 0 we can express u; as a lin-

ear combination of vy, vq, ..., v, hence as a linear combination of uq, us, ..., u;. That is not
possible as {u,us, ..., u,} is linearly independent.
Since, {v1,vs,...,v,} is an orthogonal set of n non-zero vectors it is linearly independent.

Hence it is an orthogonal basis for the n-dimensional vector space V.

12. Orthonormal set of vectors

Orthogonal set of non-zero Set of vectors
An orthogonal set V' of non-zero vectors is said to be an orthonormal set if

lul =1, YueV

13.  Orthonormalise the set of linearly independent  vectors
{(1,0,1,1),(-1,0,—-1,1),(0,—1,1,1)} of Vj.

Answer:



Suppose, u; = (1,0,1,1),us = (—=1,0,—1,1) and ug = (0,—1,1,1). First we shall find orthog-
onal vectors corresponding to uq, us and us.

Let v; = u; = (1,0,1,1). Now construct vy as follows,

U2.V1

I T

(=1,0,—1,1).(1,0,1,1)

=(-1,0,—1,1) —
( V] ’) 3

(1,0,1,1)

1
=(-1,0,-1,1) + 5(1,0, 1,1)
2 2 4
o = __707 T 957 o
v ( 33 3)

Finally, construct vs as follows,

Uus3.v1 Uus3.vy
V3 = U3z — U1 — &)
[[v1]|? [[va|?
(0,—1,1,1).(1,0,1,1) (0,—1,1,1). (2,0, -2, %) 2 2 4
=(0,—-1.1,1) — 1,0,1,1) — ~_Z 0 == =
( ) ) -9 ) 3 ( y Yy ) % 37 Y 37 3

= (07_17 ]-7 1) - 2(1707 171) _1 <_27 O) _27 é)
3 4 3 33
1 1
U3 = (_5’ _]-7 §a 0)

Thus, we get the orthogonal set {vy, v, v3}.

Now, [[vi]| = V3, vl = 2\/2 and ||vs|| = \/g The orthonormal set can be obtained

by dividing vy, vy and v3 by their respective norms as follows,

1 1 1 1 1 2

UZWﬂ%W%&:{<Z?Q7?7§’CU@Q‘_E_9(‘Z?‘??Tﬁ”o}

14.  Find an orthonormal basis of P;[—1,1] starting from the basis {1, z, 22 23}
Use the inner product defined by

m:[ﬁ@ww

Answer:
Suppose, u; = 1,us = x,u3 = 22, uy = 3. First we shall find orthogonal vectors corresponding



to uy, ug, ug and uy.

Let v; = u; = 1. Now construct v, using vy = ug — %m
Here, 1
1
Uz.vy = / us(t)oa(t).di
“1
1
_ / () (1) .dt
“1
1
_ / Lt
“1
— [1 tQT
2 15
ug.v; = 0
Also
o2 = oy
1
_ / o1 (B (1).dt
21
1
— / (1)*.dt
1
1
_ / 1Lt
21
= [t]1_1
o] =2
uty 0 UV
Therefore, we get, || ||2 (5) 1 =0 Let vy = uy — Wm



Therefore,

Also

Therefore,

v = x — 0 = z. Now, we calculate vs using vg = us —

1

Usz. v = Uus (t)Ul (t)dt

= [ 1.dt
-1
1
= [t]—l
us.v1 2/3 1
we get, ||U1||2U1 = (T) 1 = 3 Also,




Also

S lvell =
Us.V2 0 1 1 .
Therefore, we get, ||1)2||2U2 = (2—/3> x = 0 Therefore, v3 = 22 — 3 0=2a%— 3 Finally, we
. Uq4.V1 Uyg. V2 Uy .V3
calculate vy using vy = uy — 5U1 — SU2 — 7o U3 Now,
o] [[va]] [[vs]]
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Also

Sl =2

) 0
Therefore, we get, Uatn, (—) 1 =0 Also,

v
o2 \2

Uy Vg = /1U4(t)U2(t).dt
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Also

Therefore, we get,

2/5
2/3

||U2||2 = VU92.Vy

)xz%x Also,

1

M%:/m@mwﬁ

= /% (3t —1)t°.dt

-1

_ 16 141
_[Gt _1275}_1

Jo Uy V3 = 0
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Also

||?}3||2 — V3.U3

55979
8
2 e
||vsl|* = 45
Therefore, we get Ha-03 ( U ) 2=0
refore, w , — U3 = | ——= |2z =
[|vs][? 8/45
N Uyg.V1 Uyg. Vo Uy.V3
OW, Vg = Ug — 7—57U1 — Vo — V3
o> ool flus|?
3 P
Therefore, vy =2° —0— -2 —0=2° — —
5 5
) , 1 4 3z )
Thus, we obtain orthogonal set ¢ 1,2, 2% — g,x “T Now, to othonormalize the vectors

we shall divide each vector with its norm. We have Let us calculate ||v4]].

|]v4|]2 = 4.0y
1

- / va(t)va(t).dt

-1
1

S

1

[ Lse_s3nta
%

-1

1 6 3 .1
B Y S T BT
l? 55" T3 L

8

. 2 _ 7
"||U4|| _175

Dividing vy, v9, v3 and v, with their respective norms, we get the orthonormal set,

(23300 3509}
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15.

A real (complex) square matrix is orthogonal (unitary) iff the rows of
the matrix form an orthonormal set of vectors or iff the columns of the
matrix form an orthonormal set of vectors.
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